A New Era of Medicine: How Engineering will Revolutionize the Future of Healthcare

Jan 20, 2016 01:21 PM

This is going to be the century of health and medicine. "Groundbreaking inventions in mechanics, optics, materials, electronics, and computing in the past decades have ideally positioned the integration of the life sciences and engineering to address major challenges in medicine and healthcare," explained Andreas Cangellaris, dean of the College of Engineering at Illinois. "Look at what this University and the College of Engineering did for electronics and computing in the 20th Century. We have the opportunity to have the same kind of an impact in the 21st Century for health and medicine."

Today, Engineering at Illinois faculty and students are working in several strategic areas to develop new technologies and the educational expertise that will fundamentally change how medicine is taught and practiced in the 21st Century.

The Future of Healthcare

Across the College, undergraduates are taking courses in innovative methods that weave skills in mathematics, computation, statistics, ethics, and effective communication throughout core topics from genomics to infrastructure, to population behavior. This is coupled with a continued development of novel laboratory courses that emphasize the fusion of computational modeling and measurements using advanced biotechnologies.

“Interdisciplinary research and teaching have always been at the heart of the Illinois approach. But, even in this environment, the way we are all moving together in this direction is unique," said Benito Marinas, head of the Department of Civil and Environmental Engineering.

“One might not think of civil engineering as a natural source of innovation in engineering-based medicine, but five faculty members in our department are finding ways to bring their skills to bear on these issues. I know our colleagues in other departments are finding the same thing,” he said. “It might be unexpected, but, given the way Illinois faculty and students think, it’s also unsurprising.”

"Too often on university campuses, we talk about different disciplines working in silos, barriers separating us from valuable collaborations," remarked Rashid Bashir, head of the Department of Bioengineering. "In the near future, engineers and medical students will be side by side learning about and solving medical problems every day." Bashir co-authored of the article, "Engineering as a new frontier for translational medicine," that ran in the April 2015 issue of AAAS Science Translation Medicine.

"With uneven access to modern medicine across the globe, there is a pressing need for democratization of health care to deliver high-quality, cost-effective care; engineering can play a major role in meeting this critical need by enabling technologies that allow early detection, precise diagnostics, mobile health, and data-sharing for the realization of precision medicine," added Bashir.

One place where Illinois engineers and medical students will stand side by side is the new Carle Illinois College of Medicine. It will be the nation's first college of medicine focused on the intersection of engineering and medicine. The partnership between the University of Illinois at Urbana-Champaign and Carle Health System will be specifically designed to train a new kind of doctor. The groundbreaking approach will integrate the University's unparalleled assets in engineering education, technology, and supercomputing with Carle’s nationally recognized comprehensive healthcare system.

“Together we will transform not only how doctors are trained, but how they solve problems and care for patients. With physicians, engineers and other scientists collaborating at every level, faculty and students will think and work differently,” said James C. Leonard, M.D., president and chief executive officer, Carle Health System. “The difference will be felt not only by the future patients of these physicians, but also by the countless others who will benefit from their medical discoveries.”

“If you look at the current model of education you have the basic sciences, and the clinical sciences. Those two areas come together and deliver the medical curriculum. Our proposal is to add a third circle to that, which is engineering,” explained Bashir.

“The traditional life sciences, taught so ably by so many of our colleagues on campus, remain absolutely essential. But how that material is delivered can be done in a very quantitative, engineering-based way? The goals are the same, but taught very differently. The pillars we see are computing, sensors, imaging, genomics, biophysics, etc. We believe these areas can be integrated into the curriculum. It’s an equal partnership between the biological sciences, the clinical sciences, and engineering.”

"At the end of the day it is all about the students," Bashir continues. "We are here in the business of training and helping to create the next generation. By changing the curriculum in this way, we can enable the people who are closest to the patients to think about identifying and then even addressing problems along the way. So the idea is to impart more of the innovation and design components into the curriculum. We think that we can produce physician-innovators and physician-inventors."

Interdisciplinary research institutes and facilities such as the Woese Institute of Genomic Biology, theBeckman Institute, the Micro and Nanotechnology Lab, the School of Molecular and Cellular Biology, theMaterials Research Lab, the Coordinated Science Lab, and the National Center for Supercomputing Applications, along with growing clinical collaborations with Carle Health System, the Mayo Clinic in Rochester, Minn.Massachusetts General Hospital in Boston, Mass., the OSF St. Francis Medical Center in Peoria, Ill., and the College of Medicine at the University of Illinois at Chicago, are tackling a wide range of biomedical and health-related subjects. The College of Veterinary Medicine in Urbana is also an important partner for translational use of technologies using animal models.

"The overall goal that we talk about is to provide higher-quality healthcare, to more people, at lower cost," says Bashir. "So the question is 'how can we use technology to make healthcare available to everybody?' I believe it is a basic human right to have healthcare problems addressed in a way that results in a longer life. Engineers can be a part of that; new and exciting opportunities open up every day. We plan to capture those opportunities—and to define them."

Contributors: Josh Nielsen (jniels@illinois.edu) | Bill Bell (jwbell@illinois.edu) | Rick Kubetz (rkubetz@illinois.edu)